
Web Application
Security 101

Defense Against the Dark Arts 2023

Ben Eldritch

1

Whoami /all

Stuff I’ve Done:

• GICSP, OSCP, Pentest+, CySA+, Sec+, Network+, etc…

• Roanoke Bsides 2023!

• Iowa State Cyber Defense Competitions

• RISE, NCL, Sans, Google CTFs

• Webapp pentesting/Bug bounties

• Stuff I’ve done:

About Me:

• Not from Virginia but loving it!

• Currently work at Raytheon Technologies (RTX)

• Bushcrafter by day, hacker by night

02

Kontrabear, BenTheCyberOne

Thissiteissafe.com

Agenda

1. OWASP Overview

2. Secure Coding

3. Secure Design

4. Negative Outcomes

5. DEMO: Gilgamesh

6. Proper JWT Usage

7. Securing GraphQL Endpoints

8. Proper Validation

03

https://tryhackme.com/jr/gilgamesh

Gilgamesh Demo Room:

OWASP

04

• Open Worldwide Application Security Project

• “The global open community that powers secure software
through education, tools, and collaboration”

• Foundation working to improve the security of software
through open-source tools, workshops, providing best
practices, etc.

• Releases a new (in)famous “OWASP Top 10” list every 3-4
years

OWASP Top 10

05

• List of the top 10 most critical security risks
to applications (often the most found as
well)

• One of the best documents to adopt for web
application security and secure design

• Most security scanning tools base their
scanning profiles off of the OWASP Top 10

• Distinct categories based on each security
risk, though some may appear to overlap

Our Top 4

06

A01 Broken Access Control
A02 Cryptographic Failures
A03 Injection
A04 Insecure Design

Secure Coding

07

• Projects should avoid known vulnerable and unknown
libraries
• https://www.fortinet.com/blog/threat-

research/malicious-packages-hiddin-in-npm
• Outdated packages can cause severe damage!

• Ensuring sensitive data is encrypted during transit and rest,
all input is sanitized and validated, etc

• Utilizing Static Application Security Testing (SAST) tools on
newly developed source code/projects
• CodeSonar, Coverity, Gitlab
• Something is better than nothing!

Secure Design

08

• Sure, your code may be solid. But is the logic?

• This can be very time consuming, but well worth it

• Most insecure logic/design issues will not be found on
security scanners

Perfect example of bad code and bad design!

Secure Design

09

• Isolate users wherever possible
• RATE LIMIT

• Threat model each component in the application
• If a user somehow gets into this, what can they do?

What are my controls to alert me or stop them?

• Thoroughly design security rules, checks and access
controls to each route/API gateway

• Ensure all publicly accessible routes are behind proper
security gateways/Web Application Firewalls (WAFs)

…a few minutes later…

Brute forcing the code…

Negative Outcomes

10

• Webapps can be one of the most silent ways for attackers to gain a foothold

• Webapps can be modified to do damage not just internally, but to external facing users as well

• Webapps typically run in a stack – where malicious users could pivot/gain more privilege
• Connected cloud solutions
• Databases
• Source Code/Cryptographic Keys

GILGAMESH

11

"Gilgamesh is a brand new cloud service for OT equipment. With Gilgamesh, we promise to keep
your devices alive no matter the cost! Simply connect your OT devices in your factory to the
Gilgamesh Cloud and presto - factory management at the convenience of your home! We wondered
why this kind of thing doesn't exist in today's market, so we figured we'll be the pioneers of this
new age of connected factories! Gilgamesh: Keeping your factories safe up....forever!"

tryhackme.com/jr/gilgamesh

Proper JWT Usage

12

• JSON Web Tokens (JWT) are often used as access tokens and ID tokens

• They can be encrypted into JSON Web Encryption (JWE) type tokens, however JSON Web Signature
(JWS) type tokens are often the go-to
• JWE encrypts tokens with asymmetric encryption keys and cannot be decoded without them,

whereas JWS utilizes digital signatures via HMAC or ECDSA/RSA (SHA-256/512) and can be
decoded into plaintext with ease

• JWS type tokens should really be signed with ECDSA/RSA key-pairs
• Private key is utilized to sign tokens, public key is used to validate
• RSA is much faster – important to web developers
• Can be a bump in the road with fast scaling systems

• If utilizing HMAC, ensure the signing key is:
• A long, randomly generated multi-character string
• Rotated frequently

Securing a GraphQL Endpoint

13

• The big 2 A’s: Authentication and Authorization
• Ensure only authenticated users can query the

GraphQL endpoint
• Check if the user should be allowed to perform a

certain query

• Disable the playground/landing page for all
production/external facing endpoints (unless it is a supplied
service)

• DISABLE INTROSPECTION

• Mask any potential errors in queries (formatError API)

• Monitor for any anomalous behavior

Even with Introspection disabled…

14

You’ll have to patch this behavior yourself ☺

Why yes! I did mean “id”!
My bad ☺

Proper Validation
• Rule #1: Never trust anybody

• If user data comes in, always clean it

• Validation is better than sanitization

• Ensure validation middleware/functions are
placed in every route user-fed data comes in

• Don’t forget about the cookies!

• Enable your local “strict mode”

• Always validate input on the server-side

• Escape dangerous characters in the output

15

Questions?

Thank you!

16

Ben Eldritch

BenTheCyberOne/KontraBear on Roanoke Discord!

thissiteissafe.com

walkthrough:
thissiteissafe.com/gilgamesh-walkthrough/

	Slide 1: Web Application Security 101
	Slide 2: Whoami /all
	Slide 3: Agenda
	Slide 4: OWASP
	Slide 5: OWASP Top 10
	Slide 6: Our Top 4
	Slide 7: Secure Coding
	Slide 8: Secure Design
	Slide 9: Secure Design
	Slide 10: Negative Outcomes
	Slide 11: GILGAMESH
	Slide 12: Proper JWT Usage
	Slide 13: Securing a GraphQL Endpoint
	Slide 14: Even with Introspection disabled…
	Slide 15: Proper Validation
	Slide 16: Questions?

